Flow chart : Particle Group formation Guide

01	Space randomly Filled with Particles In a volume there are particles flying freely around as in in a gas. Once a the gas is being com- pressed, particles can start to bump much harder into each other and have a chance to be bonded.
02	Particle Each particle has an individual code number
03	Individual particle or in a group Individually the particle sails its own course, in a group it goes along with the group.
04	Outer influence Particle encountering other particle
05	Point in space xyz Where the particle is
06	Direction vector Where the particle is going to
07	Spin speed direction s - CW/ACW The direction in which it is spinning in regard to its direction vector, and Clock Wise or Anti Clock Wise, and how fast.
08	Radius Diametric size of the O-ring
09	Twist Number of twists along the O-ring
10	Field suction power Size of the area that surrounds the particle, and amount of suction it feels over distance.
11	Velocity Speed of the particle
12	Collision object size 0 - 1 - 2 - 3 When colliding with an other particle size and energy will define if the collision is elastic or destruc- tive. And if it's a smaller, equal or bigger particle than the other object (particle)
13	0: object processed by particle A smaller particle has an elastic collision, being processed by the bigger one.
13 B	0: speed 0 = 0 particles of normal speed have a basic elastic collision and bounce off each other. Changing the course of the particle in a normal way.
13 C	Virus particle 1/50 x (disruption of particle) A smaller particle with a very high energy might penetrate into the the particle structure and dis- rupt the processing power of that particle. One particle may not be harmful a large quantity may. As an example if its one of fifty adding up to a total of 50 the virus particle may lead to a break up of the group.
14	1: speed 0 < 1 For particles of equal size with higher than normal speed (energy), they can join or start a group or break each other.
15	2: change of direction by object

A particle that is smaller than the object it encounters might be hurled around or be a virus particle if it has very high energy, and is part of a larger number.

15 B Virus particle 1/50 x (disruption of object)

Particle can be part of a Virus attack that leads to disruption of object (a larger particle group)

16 Make / join group

Particles have entered each others field close enough to draft, line up and form a group or join an existing group.

17 Break group structure (explosion)

A high energetic collision or virus attack can cause the particle to break into multiple pieces, generating released individual or groups of particles.

18 Group G (0-1)

Is a particle part of a group, yes or no. A group is defined by the joined properties of the individual particles.

19 Position in group Gp

Because of the drafting principle a particle can no longer move around freely and so it takes a position (place) within the group relative to its relatives.

20 Neighbor front / back N f/b

Alignment with front and back neighbor, defining the train.

21 Positional shift

Front and back particles have limited freedom of movement to the left or right, to keep on hanging in the group, and enjoy the strength of the draft.

22 Binding & bundling of suction

The amount of particles that make up a train limit the drafting powers. Constipation puts a limit on the number of members within the group.

24 Limitation

Limitation defines the flexibility and possible growth of a group.

25 Bundling of forces Group Field generation

The more particles join a group, exponentially the field proportions of that group change (the whole is greater than the sum of its parts).

26 Neighbor round Nr 1,2,3,4 take open position

There are only limited places within a group due to structure set up

27 When 4: Subgroup formation xyz direction

Layers are formed, that make up a row, one such layer might be called a subgroup

28 Positional shift Twist generation

Each layer can shift in position in relation to the one behind and this can generate over an xamount of shifts a twist. Twists are related to the phase shift.

29 Stacking of Subgroups (front-back)

Layer upon layer can be stacked generating a snake like structure.

30 Attraction of surrounding particles

The bigger the group the more influence it has

31 Group velocity

0

The bundling of forces and streamlining of the individual particles causes for a win-win situation whereby the group gains momentum.

32 Mouth middle tail

Each group has a beginning and an end

33

Mouth, outer part with a positive charge (+) that can connect with other particle or close the group.

34 Positional stacking number

if not in mouth or tail a particle takes a specific position in the train

35

Tail, outer part with a positive charge (-) that can connect with other particle or close the group.

36 Eat

1

Ongoing stacking of particles in a positive (+) direction, continuously replacing the mouth by the new particle, and the mouth takes positional stacking number.

37 Eat

Ongoing stacking of particles in a negative (-) direction, continuously replacing the mouth by the new particle, and the mouth takes positional stacking number.

38 Join

Mouth and tail meet, the tower/snail/pile had become large and flexible enough so heads and tails meet.

39 Closed Group group properties synchronise to single particle property After joining the outer sides of the group a new particle is born, of which the properties are transferred into one standardized set up.

40 Proximity of other particles

One is never alone, and things start to happen when two or more become relatively close enough.